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Abstract
We discuss the collective behaviour of a set of operators and variables that
constitute a program and the emergence of meaningful computational properties
in the language of statistical mechanics. This is done by appropriately
modifying available Monte Carlo methods to deal with hierarchical structures.
The study suggests, in analogy with simulated annealing, a method to
automatically design programs. Reasonable solutions can be found, at low
temperatures, when the method is applied to simple toy problems such as
finding an algorithm that determines the roots of a function or one that makes
a nonlinear regression. Peaks in the specific heat are interpreted as signalling
phase transitions which separate regions where different algorithmic strategies
are used to solve the problem.

PACS numbers: 02.50.Ng, 05.10.−a, 07.05.Mh

The relation between statistical mechanics and computer science has been a central and
growing topic in the last few decades. Combinatorial optimization is naturally associated with
the physics of disordered systems and collective properties as described by phase transitions
are intimately related to average complexity. In this paper we study the behaviour of a set of
a special type of agents, operators and variables, which by way of their interactions make a
program. The emergent collective behaviour of the set of agents is the output of the program.
We do this with the methods and language of statistical mechanics.

The calculation of mean values is one of the most important goals of statistical mechanics.
The mean value of a function of the state of the system U(x) is a multidimensional integral
〈U 〉γ ≡ ∫

dxPγ(x)U(x), where Pγ is the probability density, γ represents the set of
parameters describing the ensemble and x is the state of the system. Analytical expressions
for these integrals are usually impossible to derive; therefore, it is a common practice to rely
on numerical techniques to calculate them. Monte Carlo (MC) simulations are frequently used
for calculating multidimensional integrals numerically. The integral 〈U 〉γ can be approached
by the arithmetic mean value U ≡ limN→∞ 1

N

∑N
n=1 U(xn), where the sampling {xn} has
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been generated according to Pγ(x). This technique has been widely used with much success
in a number of systems. In all these applications the state of the system x has been represented
by n-tuples, with fixed type and number of entries.

However, there are systems with states that cannot be well represented by n-tuples. In
the last few years, systems whose states are better represented by hierarchical structures
have been studied in the framework of genetic programming (GP) [1]. Genetic algorithms
(GA) comprise a set of techniques used to optimize a fitness function typically defined over
configurations represented by ordered n-tuples, by means of natural selection [2]. GP is an
extension of the GA techniques acting over a population of programs, which are hierarchical
structures themselves [3–5]. It is important to note that both GA and GP aim at finding a
(nearly) optimal solution for a problem, whereas MC is used to approximate numerically
multidimensional integrals.

Here we present a MC technique, inspired by GP, that is suitable to calculate mean
values in a program system (i.e. a system with states represented by programs). The paper is
organized as follows: firstly, we will describe briefly what we mean by a program and how the
MC simulations work. Afterwards we will present two toy systems used to illustrate how the
MC technique works and what information we obtain from the analysis of the mean values.
At the end we will present a general discussion.

In this work the word program is synonymous to parsing tree. Let V be a set of variables
and F a set of functions. The set of all parsing trees π formed by terminals from V and
functions from F is denoted by Sπ (V, F) (Sπ for short). The elements of Sπ are either a
terminal or a function linked to an appropriate number of parsing trees. Throughout this paper
we will identify parsing trees with LISP programs, for notation sake.

We have chosen to work in an ensemble obeying the Boltzmann distribution.
Generalization of the method to other ensembles is straightforward. In this ensemble the
probability density of the state x is given by Pβ(x) ∝ exp{−βE(x)}, where E(x) is the
energy of the configuration. The parameter β (the inverse of the temperature) sets the scale of
the fluctuation of the energy. Before starting with the technical details of the MC simulation
we would like to clarify the notation to be used. There is a difference between the program
π , which is a hierarchical structure and the value that the program returns when the input data
input is fixed �π�(input), which is an output value (number, logical value, vector, a program,
etc).

The mean of the functional U over Sπ takes the form of the sum: 〈U 〉β = ∑
κ∈Sπ

Pβ[κ]U [κ] 
 UM = 1
M

∑M
m=1 U [κm], where {κm} is the sequence of programs generated

by sampling from Pβ and both U [κ], Pβ[κ] ∈ R. A sufficient condition for ensuring
ergodicity asymptotically is given by a detailed balance condition [6]: Pβ[κ0]Kβ[κn|κ0] =
Pβ[κn]Kβ[κ0|κn], where Kβ[κn|κ0] is the transition probability from state κ0 to state κn. There
is great freedom in choosing transition probabilities without changing equilibrium properties.
In many MC approaches the conditional probability is not known and is replaced by the
expression: Kβ[κ0|κn] = T [κ0|κn] accβ[κ0|κn], where T [κ0|κn] is called the trial probability
and acc[κ0|κn] is an acceptance probability constructed to ensure K[κ0|κn] satisfies the detailed
balance condition. The trial probability can be any normalized density function chosen for
convenience. A common choice for the acceptance probability is given by:

accβ[κn|κ0] = min

{
1,

Pβ[κn]T [κ0|κn]

Pβ[κ0]T [κn|κ0]

}
= min{1, exp[−β(E[κn] − E[κ0])]}. (1)

The Metropolis method [7], obtained from equation (1) by choosing T [κn|κ0] to be a
uniform distribution of points of width � centred about κ0, is arguably the most widely used
MC method and the basis for the approach discussed in the current work. The Metropolis
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Figure 1. Example of a Metropolis step, in the parsing tree representation. It is proposed a change
at level 3 (atom 6) in the initial state (+ (abs x)(/ x(−(sgn y) y))). The change to be inserted is the
program (/(∗(+ (abs x) y) (abs y))(sgn(abs(−x x)))), which has been randomly created. The state
proposed is the program (+ (abs x)(/ x (/(∗ (+ (abs x) y)(abs y))(sgn(abs(− x x)))))).

method rigorously guarantees a random walk visits the space of configurations proportional
to the probability Pβ asymptotically in a limit of an infinite number of steps [8].

To apply the Metropolis prescription, we need to define a measure of similarity for parsing
trees (observe figure 1). The leaf at level 1 (the root of the tree) in the tree labelled initial
state presents the + function. This function needs two arguments, so we find, at level 2, the
roots of two trees. It is intuitively arguable that any change at the lower levels (leaves 3, 5
and 6 to 9 for instance) has a lower impact than a change in the upper levels (leaves 1, 2
and 4). Consider two parsing trees π ′ and π ′′, obtained from the tree π by cutting a brunch
at levels d ′ and d ′′ respectively and replacing the cut brunches by pasting randomly created
(but syntactically correct) trees. We will assume that the tree π ′ is more similar to π than π ′′

if d ′ > d ′′. Therefore, to fix d for the cutting and pasting process is equivalent to fixing the
parameter � for the usual Metropolis step. Although there is no analytical justification for
this procedure, its application leads to reasonable results.

It is easy to realize that there are many programs that differ in detail but perform exactly
the same task. Therefore, we can expect a very rough energy landscape, typical of disordered
systems, neural networks or atomic clusters. This fact justifies the use of techniques such as
parallel tempering MC (PTMC) [9], initially developed to study disordered systems and also
used to study clusters of particles [10].

In PTMC we consider at least two Metropolis processes, one at β, the other at β ′, running
in parallel. At a slow rate the two processes try to interchange configurations according to
detailed balance condition: Pβ[κ]Pβ ′[κ ′]W [β, κ � β ′, κ ′] = Pβ[κ ′]Pβ ′ [κ]W [β, κ ′ � β ′, κ],
where W [β, κ � β ′, κ ′] is the probability that the process at β in state κ interchanges its
configuration with the process at β ′ which is in the state κ ′. A common choice is:

W [β, κ � β ′, κ ′] = min

{
1,

Pβ[κ ′]Pβ ′ [κ]

Pβ[κ]Pβ ′[κ ′]

}
= min{1, exp[(β ′ − β)(E[κ ′] − E[κ])]}. (2)

We now show the implementation of this technique in two simple examples. In the first
one the states are programs that represent functions that fit a set of points P ⊂ R

2. We choose
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the energy of the system to be represented by the sum of two competing terms. One term is
proportional to the quadratic error, and the other is proportional to a roughness function. To
express the latter we define the grid M = {xm = xmin + m(xmax − xmin)/M,m = 0, . . . ,M}.
The number of elements in the grid is set to 40. The energy of program κ is defined as:

h[κ] = 1

|P|
∑

(xp,yp)∈P

{yp − �κ�(xp)}2 +
1

|M|
∑

xm∈M

|�κ�(xm+1) − �κ�(xm)|, (3)

where �κ�(x) is the value of the function represented by the program κ in the point x.
Values to be calculated are the energy E(β) = 〈h〉β and the specific heat C(β) =
β2〈[h − E(β)]2〉β . The sets of variables and functions used to construct the programs are:

V = {x} and F = {Psqr Pexp Plog sin cos + − ∗ %}, where the functions are �(Psqr x)� return≡√|x|, �(Pexp x)� return≡ exp(min{13, x}), �(Plog x)� return≡ ln(max{10−17, x}), sine, cosine,

addition, subtraction, product and protected division �(% x y)� return≡ �(|y| − 10−4)x/y +
�(10−4 − |y|)104 sgn(x), where � is the Heavyside function.

In order to calculate E and C as functions of β, we perform a PTMC in the following
way. We first set the number of Metropolis processes K that will run in parallel and the
corresponding temperatures T1 > T2 > · · · > TK . As discussed elsewhere for parallel
tempering [11], the gaps between adjacent temperatures must be chosen in such a way that
exchanges between adjacent Metropolis processes are accepted frequently enough (O(0.1)

acceptance rate). The selection of the temperatures is done by trial and error in a preliminary
simulation with no data accumulation. A randomly created program is assigned to be the initial
state for each Metropolis process. For Mw MC passes (a MC pass is an attempt to modify the
state of the system at least once) and without data accumulation, the kth process undergoes
an annealing starting from T1 and ending at Tk , reducing the temperature of the system by
�Tk = (T1 − Tk)/Mw at each MC pass. During the simulation, the parallel tempering is also
performed. An exchange between adjacent processes is attempted every ten MC passes. At
the end of this initial stage we expect to find each Metropolis process nearly in a steady state.
Afterwards we carry on with the data accumulation for Ms MC steps. For the current problem
we set K = 30, T1 = 102, TK = 10−4,Mw = 104 and Ms = 5105.

The level dk at which the Metropolis step is proposed varies with temperature Tk . We
have chosen to set dk by an adaptive strategy. For each system we set initially dk = 5. If,
for a set of ten MC steps, more (less) than five of the programs proposed are accepted, dk is
decreased (increased) by one. The maximum number of levels a program may have has been
set to 15.

In figure 2(a) the points of the set P are shown (represented by •), together with some
curves obtained in the simulation. The behaviour of the curves is quite different at different
temperatures. At high temperatures the curves found are very smooth and fit the clusters of
points, not the points. When the temperature is lowered, the curves start to fit the internal
structure of the clusters by the emergence of high frequency oscillations inside each cluster.

The mean values E(β) and C(β) reflect this behaviour (figure 2(b)). At high temperatures
(low β) all the programs are equivalent, so the mean energy is the highest possible. There is a
region in temperature around β = 4000 at which the behaviour of the curves starts to change
from the cluster-fitting regime to the point-fitting regime, as it is shown by the hump in the
C(β) curve. Finally, at a very low temperature, the mean value of the energy approaches the
lowest possible value for the energy.

In the second problem we investigate, the states of the system are update expressions for
root finding algorithms. An iterative algorithm for finding numerically the root of a function
can be expressed as: xn+1 = F(f, f ′, . . . , xn, a, b) where xn+1 is the new estimate for the root
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Figure 2. (a) Data points and best curves found at β = 0.01, β = 4000, β = 8000 and β = 10 000.
(b) Mean energy E(β) and its fluctuation C(β), for the constraint regression problem.

and F(f, f ′, . . . , xn, a, b) is an update expression that could depend on the function studied f

and its derivatives, the previous estimate for the root xn, and initial conditions like an interval
where the root is located xr ∈ [a, b] or an initial seed (considered as the 0th estimate to xr ).

To define the energy of the states we need a set of test functions G that have a root
in the (positive) interval [a, b]. Every f ∈ G can be represented by a program γf , thus

�γf �(x)
return≡ f (x). Given G and [a, b], we have at least two alternatives, either we define

the energy proportional to minus the exponent of the convergence rate, or we simply make
the energy proportional to the number of iterations needed to meet the convergence criterion.
Although the first alternative defines the energy as a function of a general property of the
update expression, it makes the energy very sensitive to the given set G. This happens
because the calculation of the rate of convergence has to be carried out numerically. If there
is a function in G for which a particular update expression, given [a, b], does not provide a
convergent sequence, the exponent obtained numerically is zero. Thus, we will define the
energy according to the second alternative.

A state π of the system represents an update expression for an iterative algorithm.
Therefore, if f ∈ G, �π�(f, xn, a, b) provides a real number which is the new estimate for
the root, xn+1. The sets of variables and functions used to construct the programs are V = {x},
and F = {G Gr Gl Dv Psqr + − ∗ %}. If the function f ∈ G is the one currently considered, G

is a dummy operator that returns the program γf , i.e. �(G x)� return≡ γf . The actions of Gr are

to replace the variable x by b and to return a number, e.g. �(Gr(G x))� return≡ �γf �(b) = f (b).
Gl is the same as Gr but replacing x by a. Dv is the derivative operator, it returns a program,

e.g. �(Dv(Gx))� return≡ (∗ 0.000001(−(G(+ 0.000001 x))(G x))).
To calculate the energy of the state π we proceed with the following iterative algorithm

for all functions f ∈ G:

1. Set the counter n to zero and x0 = a (alternatively x0 = b)
2. Calculate the estimate xn+1 = �π�(f, xn, a, b) and set n to n + 1
3. If the termination criterion has been met, then return n, else, update the lower and upper

bounds (a and b respectively) and go to 2.

The energy h of the program π is h[π ] ∝ ∑
f ∈G

nf , where nf is the number returned by
the iterative algorithm. The termination criterion is met when either a maximum number of
iterations nmax is reached (if n = nmax then return n) or the value of the function in the actual
estimate is smaller than a given tolerance ε (if |f (xn)| < ε then return n). We considered
nmax = 100 and ε = 10−4.
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Figure 3. (a) The functions that conform the set G. The interval considered is [1, π ] and
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tan(x/3.24) − x2 + 1 and (d) g4(x) = (2x/π)4 − 1. The o indicate the position of the roots.
(b) E(β) and C(β) for the algorithm for the root finding problem.

The four functions of the set G are presented in figure 3(a).
In the PTMC simulation for this system the selection of the temperatures, the annealing

technique used during the warm-up period with no data accumulation, and the adaptive strategy
to set the level at which the Metropolis step is proposed are as described in the previous
problem. The number of temperatures considered was K = 50, the highest temperature was
set to T1 = 100, and the lowest to TK = 0.02. The number of warm-up MC steps was set
to Mw = 104 and the total number of MC steps with data accumulation to Ms = 105. The
maximum level that a program can reach was set to 15.

The results for E(β) and C(β) are presented in figure 3(b). At high temperatures, as
expected, all the programs are equivalent and the mean value of the energy goes towards its
maximum value. For not so high temperatures, after the peak in the C(β) curve a relative
of the bisection method starts to appear frequently in the simulation. Instead of approaching
the root by the arithmetic mean between the upper (xu) and lower (xl) bounds to the root
(traditional bisection), this method uses the geometric mean value, i.e. xn = √

xuxl . For even
lower temperatures, the methods found perform better. For very low temperatures we found
a set of methods with very good performances. The best method found3 can find the roots of
the functions in G in 7, 3, 5 and 4 iterations respectively. The secant method applied to the
functions in G finds the roots in typically 1, 5, 10 and 32 iterations respectively.

We have calculated the mean energy and specific heat of two systems with states
represented by programs, by PTMC simulations. In both cases the landscape of the energy
is rough enough to make the Metropolis algorithm not practical. In both cases we found a
phase-transition-like behaviour with anomalies in the specific heat curve. The temperature
regions separated by these anomalies can be characterized by the properties of the states.

Even though a particular ensemble has been chosen to illustrate this technique, this does
not represent a limitation of the method. Simulations in other ensembles are possible.

In both cases the maximum level for a program has been set to 15. Although this appears
to be a limitation, the possible number of different programs that can be created is larger than
215. If we also consider that the higher the level at which a modification is done, the smaller the
difference between the old and the new programs (as discussed before), then fixing a cut-off
for the maximum level is not an important limitation.

3 (Gr (% (+ (Gr x) (Gl x)) (Dv (Dv (+ (∗ x x) (∗ (− (Gr x) (Gl x)) (Psqr (Psqr (+ (∗ (Gl (+ x x)) (Gl (+ x x)))
(% (− (+ x x) (Gr x)) x)))))))))).
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In general, an adaptively reacting Metropolis step size may lead to (somewhat subtle)
violations of detailed balance, which lead to systematic sampling errors and hence incorrect
average values. In the cases investigated, the adaptive strategy for the parameter dk leads to
constant values after the warm-up period. Therefore, we can argue that no systematic sampling
errors have been introduced by this means.

Despite the fact that the performance of the MC technique, at this point, is not better
than that of the GP for optimizing programs, thermodynamic information can be naturally
obtained by MC simulations. We have by no means exploited the full set of possible research
avenues and scores of technical issues remain. Whether this technique will in the future be
competitive or complementary to other available techniques for automatic program design
remains unanswered and deserves to be more deeply studied. Nevertheless, even if proven not
competitive for program design, the thermodynamic analysis of the system of programs might
provide valuable insights into the computational complexity, not of a single algorithm but of
the variations on its theme.
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